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Immune response to COVID-19 infection: a double-edged sword
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ABSTRACT

COVID-19 global pandemic has not ceased to spread worldwide since December 2019.
Today, scientists and healthcare workers are urgently working to stop this viral invasion and
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protect the world community. Deciphering the specific cellular and molecular immune

response to the new coronavirus 2019 is an essential step in order to develop effective treat-
ment and vaccine. Recovery from COVID-19 infection was linked to appropriate immune
responses. However, disease severity was correlated to impaired immune reactions. This
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review summarized the latest research findings on the role of immune system in fighting
and also in the pathogenesis of COVID-19. In addition, it highlighted the immunological
basis for the new coronavirus 2019 prevention, therapy and diagnosis.

1. Introduction

The world health organization (WHO) has declared
the novel Coronavirus disease COVID-19 as global
pandemic. It became the number one cause of mor-
bidity and mortality across the world. SARS-CoV-2,
an RNA coronavirus coated with several pathogenic
membrane proteins (spike glycoprotein (S), mem-
brane (M) protein, envelope (E) protein, and
nucleocapsid (N) protein), was at the origin of this
disease. It first appeared in Wuhan, China on
December 2019. After that, clusters of cases were
rapidly emerged in all over the world. At the end of
this summer, the number of COVID-19 confirmed
cases had reached 25,118,689 including 844,312
deaths (WHO). Patients are characterized by being
either asymptomatic, having mild, moderate or
severe symptoms that may result in death [I,2].
Appropriate immune response would be protective
from SARS-CoV-2 viral replication and tissues inju-
ries [3,4]. However, alterations in innate and adap-
tive immunity were associated with COVID-19
pathogenesis and disease severity [5]. Therefore,
today researchers around the world were urgently
mobilized to find answers to the following crucial
questions, how does the immune system protect the
host from the virus? How does the
response contribute to the severity of the disease?
The present review summarized the latest findings
of research studies related to these two research
questions. In addition, it covered the different pre-

immune

ventive, therapeutic and diagnostic strategies that

had been developed from immunological perspective
since the emergence of COVID-19 outbreak.

2. Initiation of an immune response against
SARS-CoV-2

Viruses interact with specific receptors in order to
gain entry into target cells. SARS-CoV-2 interacts
with Angiotensin-converting enzyme 2 (ACE2)
receptor [6-8] and in concert with the type II trans-
membrane serine protease TMPRSS2 enters the host
cells by endocytosis [9]. The c-terminal domain of
the S1 subunit of SARS-CoV-2S spike ensures a
very high affinity to ACE2 receptor [10-12]. Among
the ACE2" cells, the epithelial cells in bronchioles
and alveoli were considered the main targets of
SARS-CoV-2 [13,14]. Similar to other pathogens,
this viral invasion triggers inflammation, activation
of professional antigen-presenting cells (APCs) that
present the viral peptides to CD4 and CD8 T cells
and direct stimulation of B cells. The production of
immunoglobulins in infected patients follows the
classical pattern, where IgM are produced in the
acute phase then IgG appear later [2,15]. In add-
ition, the secretory IgA (sIgA) responsible for muco-
sal immunity appears very early (day 5) in
respiratory tract [16]. The viral load in tissues
affects the immune response, where the reaction
was more effective and rapid at low doses of SARS-
CoV-2 than high exposure [1].
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3. A pathogenic inflammation in COVID-
19 disease

Inflammation is placed on the first line of innate
immunity defense. Today, the recent studies had
unequivocally confirmed that COVID-19 severity
was positively correlated with the degree of inflam-
mation [17-21]. Zhang et al. [22] found that severe
COVID-19 patients had had a hyper inflammation
signature compared to non-severe cases. Moreover,
children with COVID-19 known for their mild dis-
ease case had less inflammatory profile than adults
[23]. SARS-CoV-2 enters the target cell along with
the ACE2 receptor, which decreases the expression
of ACE2 on the cell surface and increases the
inflammation and tissues destruction [3,6]. ACE2
plays an anti-inflammatory role by converting
Angiotensin II into Ang (1-7) [24] that reduces
vaso-permeability, edema and neutrophils infiltra-
tion to the lungs [25]. Controversially, Ziegler et al.
[14] data suggested that SARS-CoV-2 might upregu-
late ACE2 expression to enhance the infec-
tion further.

3.1. Inflammasome activation

Once present in the host cell, the SarS-CoV-2 acti-
vates the NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome. This contrib-
utes to the release of the pro-inflammatory cyto-
kines, interleukin (IL)-18 and IL-18 [20]. The
downstream NF-xB pathway was also activated
upon the interaction of the viral RNA with toll-like
receptor (TLR) 3, TLR7, TLR8, and TLRY, which
enhances pro-inflammatory cytokines production
too. Consequently, the inflammation starts and
ignites the release of high number of cytokines from
activated immune cells.

The Endoplasmic Reticulum (ER) stress caused
by SARS-CoV-2 is considered the main possible
mechanism underlying NLRP3 activation. The ER
stress markers had been detected in infected cells
such as lactate dehydrogenase (LDH) [26-32]. The
rapid viral replication causes accumulation of
unfolded proteins in the ER, which induces a stress
that the unfolded protein response (UPR) is unable
to control. Hence, NLRP3 is activated and the
infected cell dies by pyroptosis  [33,34].
Unfortunately, the correct folding of functional pro-
teins like surfactant proteins in pneumocyte II and
GPCR olfactory receptors proteins is suppressed
because of the hijack of the ER by the virus.
Importantly, the viroporins ion channels E, open
reading frame 3a (ORF3a) and ORF8a of SARS-
CoV-2 can trigger also NLRP3 activation signaling
pathway [35-37]. For instance, viroporin E can
induce a channel pore in ER and subsequently

increases outflow of Ca2+ to cytoplasm, which in
turn activates NLRP3 [38,39]. In parallel, viroporin
E and ORF3a can together directly stimulate NF-xB
signaling pathway that upregulates pro-inflamma-
tory molecules expression [40]. Altogether, it is clear
that NLRP3 inflammasome activation driven by ER
stress plays a major role in the pathogenesis of
COVID-19 (Figure 1) [41-43].

3.2. Neutrophils and NETosis

Neutrophils are the first effector molecules recruited
to the site of infection in response to cytokines.
Severe COVID-19 cases showed a very high number
of infiltrating neutrophils to the lungs especially in
Intensive Care Unit patients [17,44]. Hence, elevated
neutrophil-lymphocyte ratio could be considered as
a biomarker for COVID-19 infections [18]. In add-
ition to phagocytosis, neutrophils build up neutro-
phil extracellular traps (NETs) by releasing their
DNA, granules such as proteinase 3 and danger-
associated molecular patterns (DAMPs) in order to
kill pathogens. DAMPs in turn activate immune and
non-immune cells, which triggers more cytokines
and chemokines release from cells [45]. However,
the sustained NET formation observed in COVID-
19 created an auto-amplification loop of necro-
inflammation and dominated the defense functions
of neutrophils. NET-specific markers such as myelo-
peroxidase DNA and citrullinated histone H3 were
identified in high amounts in severe cases of
COVID-19 patients [46].

3.3. Complements, key players in hyper-
inflammation

Complements are functional proteins of the innate
immune response that increase inflammation, acti-
vate leukocytes and clear viruses. Once NETs are
established, neutrophils release CFP (Complement
Factor Properdin), C3, and CFB (Complement
Factor B) complements that stabilize the alternative
complement pathway (AP) [47]. Interestingly, AP
pathway results in anaphylatoxins production, such
as Cba that stimulates neutrophils and together with
C3a induce inflammation and tissues damages
linked to acute respiratory distress syndrome
(ARDS). Compared to non-hypoxic COVID-19
patients, a higher level of complement receptor (CR
3) was observed in neutrophils, mast cells, mono-
cytes/macrophages, basophils, eosinophils, T cells,
and B cells in hypoxic COVID-19 patients [48].



IMMUNOLOGICAL MEDICINE . 3

—| Inflammation

2 ; i i
SARS-CoV- \ };O ) —| Pro-inflammatory cytokines Pyroptosis
71\ I I T
l_ O
e - .
ACE2 receptor “e®.® o.?. .
. "e%.%1L18
IL-1R
\ | 7 Y NF-kB
-— 5@9 V— A
7 1\
| o,
s’ Viral RNAs 3 (Q)
J o = St ®_ 118
’ “oe e .._. .
Ca2+ Inflammasome s .. ®
4 ©I-1R
ER Stress

NLRP3

:

ER overloaded with viral proteins

——» Activation

® __| Inhibition through therapy

Figure 1. SARS-Cov-2 pathogenesis and major therapies. SARS-CoV-2 binds to ACE2 receptor and enters the cell. The viral rep-
lication is rapid and Endoplamic Reticulum ER becomes directly overloaded with viral proteins that causes ER stress along
with Ca2+ release. This activates NLRP3 inflammasome which in turn activates cytokine release (IL-18 and IL-1B) and leads to
programmed cell death (pyroptosis). In addition, the NF-kB pathway is also activated by the virus and causes an upregulation
of pro-inflammatory cytokines expression. Together, these mechanisms contribute to an increase in inflammatory response
that plays a key role in COVID-19 pathogenesis. The major therapies used in order to stop SARS-CoV-2 infection and its com-
plications are inhibitors for each of the ACE2 receptor, RNA polymerase (e.g., remdesivir), NLRP3 inflammasome pathway and

inflammatory response (e.g., anti-IL6).

3.4. Cytokine storm syndrome

The uncontrolled release of cytokines, also called
‘Cytokine storm syndrome’ is plausibly the major
factor underlying COVID-19 immuno-pathogenicity
[49]. This storm was at the origin of tissues dam-
ages, hyper inflammation [50] and even mortality
cases [19]. It was triggered by a hyper activation of
immune cells, which led to a boom of cytokines
release [51]. The over expression of Induced
Protein-10, hepatocyte growth factor, monokine-
induced gamma IFN, monocyte chemotactic pro-
tein-3 and macrophage inflammatory protein 1
alpha were highly associated with the disease sever-
ity classes [52]. Interestingly, the upregulation of IL-
6 got a special attention in COVID-19 pathogenicity
since it plays a major role in recruiting neutrophils
to lungs [53] and consequently inducing hyper
inflammation, neutrophilia and NETosis. In add-
ition, Mazzoni et al. [54] showed that IL-6 was
responsible for impaired cytotoxicity properties of

immune cells in severe cases of COVID-19.
However, IL-6 level in COVID-19 stays lower than
in cytokine release syndrome (CRS) [53,55].

Surprisingly, infected patients displayed reduced lev-
els of anti-viral effectors especially interferon types I
and IIT cytokines [56] and eosinophils [57,58]. This
decline in anti-antiviral agents would certainly
weaken the innate immune reaction and facilitate
viral replication.

4. How much does the adaptive immunity
defend against SARS-CoV2?

4.1. T lymphocytes

Given the high number of CD8" infiltrating cells
(80%) recruited to the site of infection, it was
admitted that the cellular immunity had the major
role to protect against SARS-CoV-2 [59].
Unfortunately, studies showed that CD8™ infiltrating
cells had a T cell exhaustion profile [60] and non-
exhausted T cells count were reduced in severe cases
[61]. The main reason for exhaustion might be
linked to the overexpression of Natural Killer group
2 member A (NKG2A) inhibitor receptor. This
hypothesis is supported by the fact that a high level
of NKG2A on CD8" cells was noted in COVID-19
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patients compared to healthy group [62] and a
reduction in NGK2A expression was observed in
recovered patients [63].

In addition to exhausted T cells, lymphopenia is
another aspect of cellular immunity in COVID-19
infection [53]. T cells count becomes low and highly
reduced in severe cases, where a percentage less
than 5% was an indicator of high mortality rate
[64,65]. Eighty-five percent of COVID-19 patients
with  pneumonia showed lymphopenia [50].
Lymphocytes percentage might now be used as bio-
marker to classify severity of disease or recovery
[66]. Along with CD8" lymphopenia, Natural Killer
cytotoxic immune cells amount had also been
reduced in COVID-19 patients, which also exacer-
bated the severity of infection.

Some researchers had suggested that first the
virus over-activates CD8" cells then the T cells
become exhausted. This over activation induces an
over-cytotoxicity response that contributes partially
to the tissues damage too [67]. In addition to lym-
phocytes exhaustion and lymphopenia, the SARS-
CoV-2 were able to infect T cells through the bind-
ing of S viral spike with CD26 or CD147 on T cells
and caused their depletion [68]. Moreover, some
cytokines such as IFN-o/f or cytokines derived
from mononuclear macrophages killed T cells by
apoptosis [69]. Regulatory T cells (Treg), known for
their important role in limiting respiratory infec-
tions [70], were also affected in COVID-19 lympho-
penia [64]. Finally, T helper cells Th1/Th17 were
also hyper activated in order to stimulate B lympho-
cytes production of specific antibodies anti-SARS-
CoV-2 [62,71].

4.2. B lymphocytes and immunoglobulins

During COVID-19 infection, the humoral immune
response was activated through the direct inter-
action with the virus or upon stimulation by CD4™
T helper [15]. However, not all patients showed the
same pattern of immunoglobulins production dur-
ing infection. The study of To et al. [72] revealed
that a high proportion of COVID-19 patients had
developed IgG earlier than IgM in serum. This
might be explained by the presence of IgG released
from memory B cells due to previous exposure to
other coronaviruses with similar epitopes, which
gives the disease an antibody-dependent enhance-
ment (ADE) characteristic. Sixteen percent of B-cells
specific for SARS-CoV are able to recognize SARS-
CoV-2 [73]. Given that secretory IgA (sIgA) mission
is to protect mucosal respiratory tract from patho-
gens, it should normally be considered the most
important immunoglobulin to neutralize SARS-
CoV-2. In COVID-19 patients, IgA appeared very

early [16], persisted longer than IgM [74] and
stimulated pro-inflammatory cytokines release like
IL-6 and monocyte chemoattractant protein (MCP)-
1 [75]. A group of IgM seronegative COVID-19
patients in Florence, Italy had developed IgA
(5-7 days post symptoms), with an average of IgA
level much higher than IgG two and three weeks
later [76]. Importantly, IgA anti-SARS-CoV-2 were
also detected in saliva and could remain for three
months or longer after symptoms [77]. High IgG
and IgA levels were correlated with COVID-19
severity [26]. Interestingly, a seronegative patient
does not mean there is no immunity, IgA and IgG,
for example, were detected in breast milk of an
infected patient and not in other body fluid [78].

5. Preventive, therapeutic and diagnostic
strategies from immunological perspective

5.1. Prevention

In order to control COVID-19 pandemic with the
absence of an effective treatment, preventive steps
are urgently needed. Deciphering the immune-
pathogenesis had provided scientists with interesting
clues to set up preventive practices. The develop-
ment of SARS-CoV-2 vaccines is still under devel-
opment. These may include RNA, viral vector,
virus-like particles, inactivated or live-attenuated
viruses [71]. A mRNA-1273 vaccine, a novel lipid
nanoparticle (LNP)-encapsulated mRNA-based vac-
cine which encodes the spike protein (S protein) of
SARS-CoV-2 was able to enhance antibodies pro-
duction against the viral spike protein following the
second dose during phase I trial [79]. A vaccine vec-
tor under preparation consists of a newly synthe-
sized avian ortho-avulavirus 1 (AOaV-1) carrying
the spike glycoprotein and hemagglutinin-neuramin-
idase HN genes has promising results [80]. In
Canada, a series of authorized clinical trials are
under investigations including recombinant BCG
vaccine VPM1002 that is undergoing phase 3 clin-
ical trial, coronavirus-like particle CoVLP vaccine in
phase 1 and IMM-101 in phase 3 trial [81]. A study
by Ahmed et al. [73], determined B and T cells epit-
opes derived from S and N proteins of SARS-CoV-2
and suggested the use of immune vaccination
against these epitopes. Oral f-glucan vaccine has
also been proposed as it has anti-viral effects and
can boost the immune response by inducing trained
immunity (TRIM). BCG vaccine was also found to
stimulate a specific immune response against the
SARS-CoV-2 envelope [82]. Herd immunity, when
enough people in a population (70-90%) become
immune to the virus, might also be protective
(83,84]. However, WHO mentioned that currently,
only around 10% of the global population has anti-



SARS-CoV-2 antibodies in their blood and it is still
not known if they can be considered immuno-pro-
tected. Finally, the natural antibodies anti-A and
anti-B developed by blood type O might have a pro-
tective function against COVID-19 infection [85,86].

5.2. Therapy

Since the emergence of the pandemic, laboratories
worldwide had put their full power in order to find
out an effective cure for COVID-19. Unfortunately,
a specific anti-viral substance to kill SARS-CoV-2
was not yet discovered. Pharmacologically, some
had successfully tried remdesivir drug that had lim-
ited viral replication through inhibiting viral RNA
polymerases [87,88]. Fortunately, others had used
Angiotensin-converting-enzyme ACE2  inhibitors
that prevented the binding of the virus to its specific
receptor [89,90] and subsequently protected cells
from infection (Figure 1). Lipid mediators like
Elovanoid (ELV)-N32 or Resolvin Dé6-isomer
(RvD6i) were able to reduce ACE2 expression which
resulted in preventing viral attachment to its target
and could be used to stop the infection [91].

Today, researchers are trying to understand the
immunological behavior of infected patients in order
to set up better immunotherapies for COVID-19.
Given that, the pathogenesis is highly correlated
with an explosive inflammatory reaction, it would
be essential to block this excessive immune
response. Thus, researchers are now targeting cellu-
lar and molecular effectors of inflammation. Several
trials are testing colchicine to inhibit neutrophils
recruitments and inflammation [91] while others are
assessing the impact of NETS inhibitors (e.g.,
PAD4). Interestingly, Shu et al. [92] recommended
the use of mesenchymal stem cells derived from
human umbilical cord to reduce cytokines and C-
reactive proteins (CRP) in COVID-19 patients. CR3
antagonists (Simvastatin) use can also help in pre-
venting and treating COVID-19 pneumonia [48].
Immunosuppressors like corticosteroids were highly
used to treat severe cases by reducing hyper-inflam-
mation and cytokine storm syndrome(. Given the
crucial role of NLRP3 inflammasome in increasing
infection severity, it is important to look for strat-
egies that inhibit NLRP3 pathways activation
(Figure 1) [41].

On the other hand, a very low immune response
increases severity of COVID-19. Therefore, it would
be essential to improve immunity in patients with
immunodeficiency. Immunomodulatory molecules
that enhance lymphocytes proliferation and activa-
tion could be used to rescue the fall in lymphocytes
count due to lymphopenia [93]. Barcitinib, Janus
Kinas (JAK) inhibitor, can enhance anti-SARS-CoV-
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2 spike antibodies production [94]. Given their anti-
viral properties, Interferon therapy might also be
beneficial since interferon I and III levels are
reduced in infected patients.

A large panoply of monoclonal antibodies was
recommended for COVID-19 treatment.
Meblazumab, anti-CD147 receptor antibody may
protect T cells from being infected by SARS-CoV-2
[95] since the virus was able to bind to CD147 and
enter the cell . Interestingly, blocking activity of IL-
6, the major cytokine related to COVID-19 patho-
genicity would be very effective. Tocilizumab, IL-6
receptor antagonist is a potential candidate that pre-
vents inflammation, tissue damages and restore
cytotoxicity properties of immune cells [54,96]. The
use of complement inhibitors in COVID-19 such as
eculizumab anti-C5 antibody is under trials.
Interestingly, the T lymphocytes depletion could be
rescued by blocking NGK2A receptor that plays a
major role in exhaustion of T cells. Fortunately,
Monalizumab, antibody anti-NGK2A receptor may
prevent CD8 T cells and NK from dysfunction [62].
Canakinumab, new release from Novartis may calm
down cytokine storm syndrome, a main aspect of
COVID-19 pathogenesis.

Given the important role of immunoglobulins in
fighting SARS-CoV-2, passive immunity through
immunoglobulins transfusion was considered effect-
ive for treatment. Despite the controversies about
the use of recovered patient’s serum as treatment,
patients who had received convalescent serum ther-
apy presented good outcomes [97]. Infected patients
who have pneumonia in addition to COVID-19
should take IgG4 treatment and no other IgGs for
more safety [98]. The use of IgA anti-SARS-CoV-2
has also good promises for therapy [99,100].
Interestingly, IgA monoclonal antibody MAb362,
that binds to S spike proteins of SARS-CoV-2 pre-
vents the viral attachment to ACE2 and provides
patient with mucosal immunity [101]. Finally, the
administration of mammalian target of rapamycin
(mTOR) inhibitors was effective to prevent ADE
that causes uncontrolled immunoglobuline heavy
chaines (IgH) release [102].

5.3. Serological tests

Three diagnostic test types are used in COVID-19
diagnosis: real-time polymerase chain reaction RT-
PCR, antigen detecting tests and antibody detecting
tests. A study by Brooks and Das compared these
three types. The percent positive agreement (PPA)
also known as sensitivity is higher in molecular
(86.14%) than antibody (68.44%) and antigen
(61.70%). However, the specificity or percent nega-
tive agreement (PNA) is high in all types: 98.26% in



6 N. SAAD AND S. MOUSSA

antigen type and almost 95% for others [103].
Another study conducted by Miller et al. compared
PCR and serology based on enzyme-linked
immunosorbent assay ELISA for antibodies IgM,
IgG and IgA anti-SARS-CoV-2 targeting its receptor
binding domain RBD in the S protein. The sensitiv-
ity of ELISA was higher with days after the onset of
symptoms with >50% seropositive by one isotype at
least, at day 7 and 100% at day 21 [104]. These
results were also demonstrated by Peterhoff et al.
who additionally found the absence of cross-reactiv-
ity between antibodies resulted from previous cor-
ona-like seasonal viruses and anti-SARS-CoV-2
antibodies. These antibodies were detected by RBD-
based ELISA showing high specificity 99.3% and
sensitivity: 98% for IgM, 96% for IgG and 92% for
IgA, 10 days after PCR-confirmed infection [105].

Moreover, a study tested several in-house and
commercial serological tests against nucleocapsid
and spike proteins. Results showed sensitivities and
specificities respectively for in-house ELISA tests
against anti-trimer spike: IgA 90%/100%, IgG 90%/
99.3% and anti-nucleocapsid IgG 89%/98.3%.
However, sensitivities/speciﬁcities for commercial
EDI™ Novel Coronavirus COVID-19 ELISA for
anti-nucleocapsid antibodies showed 84.5%/95.1%
for IgG and 73.7%/100% for IgM. In addition to
other sensitivities/specificities for commercial tests
like Euroimmun ELISA 95%/93.7% (S1 IgA), 82.8%/
99.7% (S1 IgG), and lateral flow assays by Chembio
Diagnostics Systems revealing 82.0%/91.7% (nucleo-
capsid IgM) and 92%/93.3% (nucleocapsid
IgG) [106].

In addition, a comparison of the sensitivity and
specificity of: anti-SARS-CoV-2 nucleocapsid IgG
testing through a chemiluminescent microparticle
immunoassay CMIA manufactured in Abbott labo-
ratories, anti-SARS-CoV-2 nucleocapsid antibodies
by a sandwich electro-chemiluminescent assay
ECLIA from Roche diagnostics and IgG anti-S1/S2

chemiluminescence  immunoassay CLIA  from
DiaSorin was performed by Perkmann et al. All
three tests showed high specificities: 99.2%, 99.7%
and 98.3% respectively. However, a significant prob-
lem of incompatibility was found at low seropreva-
lences, which imposes results
confusions [107].

Other serological methods were also studied. The
MosaiQ® COVID-19 Antibody microarray was
found to test anti-S1 IgG and IgM of the SARS-
CoV-2 with 100% clinical specificity and 88% clin-
ical sensitivity [108]. Furthermore, biolayer interfer-
ometry immunosorbent assay (BLI-ISA) is a rapid
automated (dip-and-read) diagnostic method that
can be used for the detection of anti-SARS-CoV-2
IgG antibodies [109]. A rapid gel card agglutination
assay based on indirect ELISA, using red blood cells
coated with SARS-CoV-2 peptide (RBD, spike pro-
teins and nucleocapsid) can also detect IgG in the
patients’ serum [110]. Similarly, NovaTec tested the
NovalLisa SARS-CoV-2 IgG, IgA and IgM detection
with 94.9%/96.2%, 89.7%/98.7% and 48.7%/98.7% as
sensitivity and specificity respectively. Also, the Bio-
Rad has the Platelia SARS-CoV-2 total antibodies
detection with 97.4% specificity and 94.9% sensitiv-
ity against the viral nucleocapsid [111].

serious positive

6. Conclusion

As understanding the roles of immune responses in
COVID-19 disease has evolved, a new vision to the
immunity to SARS-CoV-2 has been revealed to the
public health. The two opposite aspects of immune
reactions during infection, the ‘good’ and ‘harmful’
patterns, are the keys to set up effective strategies in
order to control this pandemic (Figure 2). Today,
researchers are urged to explore more the mecha-
nisms involved in COVID-19 immune-pathogenesis

domains of  the SARS-CoV-2 by a  in order to bring out the essential elements.
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Figure 2. The two opposite aspects of immune response to SARS-CoV-2.
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